Automated Penetration Testing with QuickCheck

Agustin Mista
Chalmers University of Technology
mista@chalmers.se

Abstract

Random property-based testing is an increasingly popular
approach to finding bugs [2, 7, 8]. In the Haskell community,
QuickCheck [3] is the dominant tool of this sort. QuickCheck
requires developers to specify testing properties describing
the expected software behavior. Then, it generates a large
number of random fest cases and reports those violating
the testing properties. QuickCheck generates random data
by employing random test data generators or QuickCheck
generators for short. The generation of test cases is guided by
the types involved in the testing properties. It defines default
generators for many built-in types like booleans, integers,
and lists. However, when it comes to user-defined ADTs,
developers are usually required to specify the generation
process. The difficulty is, however, that it might become
intricate to define generators so that they result in a suitable
distribution or enforce data invariants.

Rather than manually writing generators, libraries derive
[11] and MegaDeTH [5, 6] allow us to automatically synthe-
size generators for a given user-defined ADT. The library
derive provides no guarantees that the generation process
terminates, while MegaDeTH pays almost no attention to
the distribution of values. In contrast, Feat [4] provides a
mechanism to uniformly sample values from a given ADT.
It enumerates all the possible values of a given ADT so that
sampling uniformly from ADTs becomes sampling uniformly
from the set of natural numbers.

In this work, we consider the scenario where developers
are not fully aware of the properties and invariants that
input data must fulfill. This constitutes a valid assumption
for penetration testing [1], where testers often apply fuzzers
in an attempt to make programs crash—an anomaly which
might lead to a vulnerability.

Our realization is that branching processes [12], a relatively
simple stochastic model conceived to study the evolution of
populations, can be applied to predict the generation distri-
bution of ADTSs’ constructors in a simple and automatable
manner. To the best of our knowledge, this stochastic model
has not yet been applied to this field, and we believe it may
be a promising foundation to develop future extensions.

Using our probabilistic formulas, we design heuristics
capable of automatically adjusting probabilities in order to
synthesize generators which distributions are aligned with
users’ demands [10].

SWITS, June 3-4, 2019, Karlstad, Sweden
2019.

Alejandro Russo
Chalmers University of Technology
russo@chalmers.se

Furthermore, we provide a Haskell implementation of our
mechanism in a tool called DRAGEN and perform case stud-
ies with real-world applications. When generating random
values, our synthesized QuickCheck generators show im-
provements in code coverage when compared with those
automatically derived by state-of-the-art tools.

Recently, we extended our framework to consider addi-
otional sources of structural information from the users’
codebase [9]. In this light, our random generators can pro-
duce complex patterns of values, as well as calls to functions
in abstract interfaces, obtaining remarkable improvements
in terms of code coverage. All of this while still being able to
reason about the distributions of generated values in terms
of branching processes.

References

[1] B. Arkin, S. Stender, and G. McGraw. 2005. Software penetration
testing. IEEE Security Privacy (2005).

[2] T. Arts, J. Hughes, U. Norell, and H. Svensson. 2015. Testing AUTOSAR
software with QuickCheck. In In Proc. of IEEE International Conference
on Software Testing, Verification and Validation, ICST Workshops.

[3] K. Claessen and J. Hughes. 2000. QuickCheck: A Lightweight Tool for
Random Testing of Haskell Programs. In Proc. of the ACM SIGPLAN
International Conference on Functional Programming (ICFP).

[4] J. Duregard, P. Jansson, and M. Wang. 2012. Feat: Functional enumer-
ation of algebraic types. In Proc. of the ACM SIGPLAN Int. Symp. on
Haskell.

[5] G. Grieco, M. Ceresa, and P. Buiras. 2016. QuickFuzz: An automatic
random fuzzer for common file formats. In Proc. of the ACM SIGPLAN
International Symposium on Haskell.

[6] G. Grieco, M. Ceresa, A. Mista, and P. Buiras. 2017. QuickFuzz testing
for fun and profit. Journal of Systems and Software 134 (2017).

[7] J. Hughes, C. Pierce B, T. Arts, and U. Norell. 2016. Mysteries of
DropBox: Property-Based Testing of a Distributed Synchronization
Service. In Proc. of the Int. Conf. on Software Testing, Verification and
Validation.

[8] J. Hughes, U. Norell, N. Smallbone, and T. Arts. 2016. Find more
bugs with QuickCheck!. In The IEEE/ACM International Workshop on
Automation of Software Test (AST).

[9] Agustin Mista and Alejandro Russo. 2019. Generating Random Struc-
turally Rich Algebraic Data Type Values. In Proceedings of the 14th
International Workshop on Automation of Software Test.

[10] Agustin Mista, Alejandro Russo, and John Hughes. 2018. Branching
processes for QuickCheck generators. In Proc. of the ACM SIGPLAN
Int. Symp. on Haskell.

[11] N. Mitchell. 2007. Deriving Generic Functions by Example. In Proc. of
the 1st York Doctoral Syposium. Tech. Report YCS-2007-421, Department
of Computer Science, University of York, UK, 55-62.

[12] H. W. Watson and F. Galton. 1875. On the probability of the extinction
of families. The Journal of the Anthropological Institute of Great Britain
and Ireland (1875).



	Abstract
	References

