
Isolation of a Network Interface Controller

Jonas Haglund
jhagl@kth.se, KTH Royal Institute of Technology

Formally verified execution platforms (e.g. hypervisors) provide an in-
frastructure for implementing secure IoT devices. By guaranteeing memory
isolation and controlling communication between software components, they
prevent faults of non-critical software (e.g. large and complex commodity
software) from affecting security or safety critical software. This enables
formal verification of critical software without considering non-critical soft-
ware.

An issue with some of these verified execution platforms is that I/O
devices are not considered. Either I/O devices are disabled (making the IoT
device useless), or device drivers (whose code is comparable in complexity
and size to the verified execution platform) are trusted. In the latter case
isolation could be violated if a driver abuses Direct Memory Access (DMA)
of an I/O device.

We designed an IoT device whose security relies on isolation and the
principle of complete mediation: The device driver of the Network Interface
Controller (NIC) is part of untrusted software and its NIC reconfigurations
are checked by a run-time monitor to preserve a security policy, phrased as
an invariant. The invariant is preserved by the NIC and implies that the NIC
cannot access certain memory locations. The security of this design depends
on: (1) Correct isolation of the monitor; (2) the monitor is correct by denying
NIC reconfigurations that violate the invariant; and (3) the invariant ensures
that the NIC does not break isolation.

We accomplished the first formal verification of isolation (3) for a real
hardware I/O device of significant complexity: The NIC of Beaglebone
Black. We formalized the model of the NIC, and we defined the security
policy as an invariant of its state. Then we proved in the HOL4 interac-
tive theorem prover that the invariant is preserved by the NIC and that it
restricts DMA accesses to only certain memory locations.

The software of the demonstrator consists of a secure hypervisor that
hosts Linux, a secure service, and the monitor. Linux controls the NIC, but
the monitor, implemented in the hypervisor, intercepts each NIC reconfig-
uration and checks that it does not enable the NIC to access memory not
part of Linux. This enables the secure service to access the Internet, using
Linux as an untrusted intermediary.


