
System Transparency Logging

No Author Given

No Institute Given

1 Overview

Suppose that you downloaded an executable binary. You are ready to install
it, but realize that there might be a catch. How do you know it is the same
executable binary that everyone else downloaded, and not, say, a modified one
which includes a backdoor? The short answer is that you cannot easily know
that.1 In this talk, we present a partial solution that helps detect such attacks.

The basic idea is to use a transparency log. It is like Certificate Transparency,
expect that we are logging cryptographically signed checksums as opposed to
X.509 certificates. We focus on checksums that represent system artifacts. A
system artifact could be an executable binary, a Debian package, or an Ansible
playbook (to mention a few examples). Our goals can be summarized as follows:

1. Ensure that everyone observes the same signed checksums.
2. Facilitate detection of compromised signing keys.

2 Threat model

We consider an attacker that gained control of a software provider’s secret signing
keys and release infrastructure. The attacker also runs the log, and up to a
threshold of cosigning witnesses. Witness cosigning is part of our gossip-audit
model. Without a gossip-audit model the log must be a trusted third-party.

The attacker’s goal is to make a client accept a malicious artifact without
anyone noticing. Assuming that the client enforces transparency logging, the
attacker’s best bet is no longer to craft a malicious artifact that is only served
to a handful of clients. This follows from the fact that there must be a public
trace of each artifact before a client accepts it as valid, making it discoverable.

3 Current status

Our transparency log design is implemented as a Trillian personality. Trillian
is essentially a general-purpose backend with a database and an append-only
Merkle tree. The personality part is an application-specific front-end. Further
details can be found in the System Transparency Front-End (STFE) repository.

1 A reproducible build is helpful, but it still begs the question whether you see the
same source code as everyone else. Our work coexists well with reproducible builds.

https://github.com/system-transparency/stfe

	System Transparency Logging 

