A Technique for Remote Detection of VMware
Workstation

Christopher Jamthagen and Martin Hell
Department of Electrical and Information Technology
Lund University, Sweden
E-mail: {christopher.jamthagen,martin.hell} @eit.Ith.se

I. INTRODUCTION AND MOTIVATION

Virtualization is a technology often used in testing and
analyzing potential malware. Any changes made on the OS
by the malware can easily be undone by reverting back to a
previously saved snapshot of the system configuration. This
will not only make the analysis more efficient, but it is
also an easy way of separating the environment exposed to
the malware from the rest of the computer. This technique,
however, comes with a drawback. If the malware can detect
that it is being executed inside a virtual machine, it can adapt to
this and simply run harmless code. If it is not being executed in
a virtual machine, the malware will run the intended malicious
code. This will make analysis of the code much more difficult,
and in the worst case, malware will not be detected in the
analysis. When running in a virtual machine, there are several
ways to detect this fact, see e.g., [1]. Since there are many
properties of the execution environment that are accessible to
the program, it is very difficult to prevent this detection.

In this paper we will take a closer look on remote detection
techniques of virtual machines. More specifically, we will
try to determine if network traffic originates from a virtual
machine by just looking at the packages sent. In a potential
attack, a webpage hosted by a web server could attempt to
exploit a vulnerability in the browser. The code run on a
webpage can be analysed in a virtual machine and if no
malware found, the webpage is considered harmless. If the
web server can detect that the remote machine running the
browser is run in a virtual machine, the webpage can simply
choose to not run the exploit. However, if the browser is not
run in a virtual machine, the exploit can be launched.

II. VMWARE AND NAT

VMware has many virtulization products and we focus on
VMware Workstation, which utilizes a type II hypervisor,
meaning that it runs as a regular application ontop of the
host operating system. The hypervisor may run several guest
operating systems. In our setting, the host will have a private IP
address and connects to an external network through Network
Address Translation (NAT). Though there are several different
variants of NAT, the most commonly used is the Network
Address Port Translation (NAPT). In NAPT, the NAT router
translates the IP address and the transport identifier (e.g., TCP
or UDP port) such that several private hosts can communicate
with an external network. The source IP address of outgoing

packets is then typically changed to the (external) IP address
of the NAT router.

Our remote virtual machine detection technique is appli-
cable if the host/guest combination is either Linux/Windows
or Windows/Linux-based. It is based on the following two
observations:

e VMware’s NAT implementation changes some guest OS
specific values in outgoing TCP/IP headers to host OS
specific values.

o We have not found this behaviour in other NAT imple-
mentations, such as home routers.

The identification field in the IP header (IPid) is used to
reassemble fragmented packets. This field is typically set in
one of three ways. A global counter can be used, incrementing
the value for each packet sent. This is used in Windows
operating systems. Another option is to use one counter for
each connection, which is implemented by the Linux kernel.
A third option is to use a PRNG to set the values. This is
used in e.g., OpenBSD. The TTL for a packet is also different
depending on the operating system, typically Linux OSes set
the TTL to 64 while Windows sets it to 128.

In the VMware Workstation NAT, both the IPid and the
TTL characteristics are changed to the characteristic used by
the host operating system, even though packets originates from
the guest OS. This can be exploited for remote virtual detection
by setting up a web server accepting HTTP requests. If there
is a discrepancy between the user-agent in the HTTP header,
the IPid algorithm and/or the TTL value, we can conclude that
one or more fields have been rewritten on the way, and that
the likelihood of VMware workstation being used is looking
pretty good.

To implement this three things are needed:

e A web server that allows connections on two distinct
ports. Two ports are needed to test the IP ID discrepancy
problem.

o A custom sniffer that can catch packets destined to the
web server and analyze them.

o Some sort of database that can mediate the result of the
analysis to the webserver, so that it can take the right
decision of what content should be sent to a certain host.

REFERENCES

[1] Ed Skoudis and Tom Liston. Thwarting virtual machine detection.

http://handlers.sans.org/tliston/ThwartingVMDetection_Liston_Skoudis.pdf



