
Today 95% of all mobile devices run Android, Symbian, iOS or RIM, all
of which share the same security model for third party applications. Each
time a new application is installed the OS asks the user if he or she grants
the application a set of permissions. Such permissions typically allow the
application to access internet, the GPS hardware, address book data, camera
etc. Unfortunately this model is quite crude and most useful and innocent
tasks require a combination of permissions which could just as well be used
maliciously. For this reason it is important to study techniques, such as the
one I will present, which allow policies to be expressed at a finer level of
granularity.

The technique combines data flow monitoring with control flow monitor-
ing by (a) keeping track of how each value in the execution has been com-
puted and by (b) preventing certain function calls from being made based on
this information. This data-centric approach to runtime monitoring allows
for a wide range of policies to be expressed, including API protocol policies
restricting which methods may be applied to what arguments and data flow
policies stating how data must have been processed before being passed to
certain functions.

The approach differs from traditional runtime monitoring on 3 key points:
(1) While ordinary techniques, perform monitoring globally on the level of
an application, our technique operates on the level of data. This means that
different computations and processings of data are monitored in isolation,
despite being arbitrarily interleaved on an application level. (2) Existing
runtime monitoring frameworks are typically based on DFAs, edit automata,
LTL, context free grammars, or a variations thereof, all of which rely on a
model of linear monitoring. Since we in our work focus on how data is
processed i.e. which functions are applied to what arguments, rather than
in what order actions are performed, we work with a tree based model of
monitoring. (3) Similarly to work by others we let the function calls be the
actions observable by the monitor. The fact that monitoring is performed
on the data level however, allows the observable actions to include the com-
putational history of the arguments of the function calls, which makes our
definition of observable actions unique.

The presentation will cover the theoretical formalization of the frame-
work including the program model and policy semantics and a demonstration
of our implementation.

1


