Towards a Secure and Resilient Vehicle Design: Methodologies, Principles and Guidelines


Kim Strandberg

The advent of autonomous and connected vehicles has brought new cyber security challenges to the automotive industry. It requires vehicles to be designed to remain dependable in the occurrence of cyber-attacks. A modern vehicle can contain over 150 computers, over 100 million lines of code, and various connection interfaces such as USB ports, WiFi, Bluetooth, and 4G/5G. The continuous technological advancements within the automotive industry allow safety enhancements due to increased control of, e.g., brakes, steering, and the engine. Although the technology is beneficial, its complexity has the side-effect of giving rise to many vulnerabilities that might leverage the potential for cyber-attacks. Consequently, there is an increase in regulations that demand compliance with vehicle cyber security and resilience requirements that state vehicles should be designed to be resilient to cyber-attacks with the capability to detect and appropriately respond to these attacks.
Moreover, increasing requirements for automotive digital forensic capabilities are beginning to emerge. Failures in automated driving functions can be caused by hardware and software failures as well as cyber security issues. It is imperative to investigate the cause of these failures. However, there is currently no clear guidance on complying with these regulations from a technical perspective.

This presentation briefly introduces some background to automotive cyber resilience research, its challenges, as well as ongoing work.