
Efficient Memory Encryption for Neural Network
Accelerators

George-Alexandru Stoian, Pavlos Aimoniotis, Per Ekemark, Xiaoyue Chen, Stefanos Kaxiras
Uppsala University, Sweden

george-alexandru.stoian.6273@student.uu.se, {pavlos.aimoniotis, per.ekemark, xiaoyue.chen, stefanos.kaxiras}@it.uu.se

Abstract—Modern IoT and edge devices, by their nature,
are particularly vulnerable to hardware attacks. Providing data
protection using “Secure Enclaves” and general lightweight cryp-
tography techniques incurs an inordinately large performance,
energy, and storage overhead cost. To accomplish efficient data
protection, novel architecture designs are required. In this work,
we focus on neural network accelerators running in inference
phase, and we propose a design that reduces the latency and
metadata cost incurred by memory encryption. The key concept
of our work focuses on moving the security metadata from block
granularity to tensor granularity, and using existing cryptogra-
phy primitives cores in order to showcase that we can reduce
both the storage required and hide the encryption latencies by
leveraging the deterministic nature of the feedforward phase.

I. INTRODUCTION

Secure computing requires devices being safe from both
software and hardware attacks. A typical approach to hardware
security is to guard sensitive data by keeping it in a “Secure
Enclave” that encapsulates several techniques developed in
the past two decades. Different vendors have similar imple-
mentations of the commercially viable subset of fundamental
concepts constituting a “Secure Enclave” (Intel SGX [1],
Vault [3], RISC-V Keystone [2]). In such enclaves the attacker
should not be able to observe the data (confidentiality) or
modify them without being detected (integrity). For confiden-
tiality, counter-mode encryption is employed, where memory
blocks are encrypted along with a monotonically increasing
counter. Blocks are encrypted upon a write instruction, and
decrypted upon a read instruction from the memory. For
integrity, message authentication codes (MAC) are used along
with the encryption. Intel SGX [1] uses 56-bit counters and
56-bit MAC for each memory block, introducing significant
storage overhead.

II. OVERVIEW

In this work, we focus on machine learning accelerator em-
bedded devices that deal with Convolutional Neural Networks
(CNN) like models to infer a result (inference phase). The goal
is to ensure that the model parameteres (i.e., weights) and
the inference process are protected. Self-driving cars are an
application where such security is crucial. The model weights
are an expensive asset shipped with every car and the result
of the inference process is integral to whether the car can be
called self-driving or not.

By making use of the domain knowledge of neural net-
works and the inherent predictability of the memory accesses

performed during inference we can design security measures
that work with tensors or chunks of tensors as opposed to
single data words.

The bulk of the memory accesses performed in a system
enhanced with a machine learning accelerator is made out
of reading and writing tensors or chunks of them depending
on the their size. We call the integrally accessed chunks of
memory “Large Securable Objects”(LSOs). The key prop-
erty of these chunks is the guarantee that once we touch a
memory address belonging to an LSO the rest of it will be
read/written it in its entirety. Additionally, as the tensors have
to be defined before the inference starts we know in advance
how many such LSOs exit. Protecting predefined blocks of
memory greatly reduces the amount of metadata required to
provide confidentiality and integrity. Furthermore, this raises
the possibility of moving the encryption and integrity metadata
(e.g., AES counters and hashes) from the main memory to
the System-on-Chip (SoC) thus possibly eliminating the main
memory usage of the added security. The security metadata
is no longer proportional to the size of the tensors but to the
number of tensors. In an ideal scenario, where we have few and
continuous LSOs, the security metadata can be stored inside
the SoC, removing any extra overhead introduced in memory
from previous encryption approaches. In the typical scenario,
the security metadata on the memory side is significantly
reduced, with the amount of reduction being proportional to
the number of LSOs.

REFERENCES

[1] V. Costan and S. Devadas, “Intel sgx explained,” Cryptology ePrint
Archive, 2016.

[2] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song, “Keystone:
An open framework for architecting trusted execution environments,” in
Proceedings of the Fifteenth European Conference on Computer Systems,
2020, pp. 1–16.

[3] M. Taassori, A. Shafiee, and R. Balasubramonian, “Vault: Reducing
paging overheads in sgx with efficient integrity verification structures,” in
Proceedings of the Twenty-Third International Conference on Architec-
tural Support for Programming Languages and Operating Systems, 2018,
pp. 665–678.


