
More faith in formal isolation properties 
 

In our group at KTH, we study improvements of security properties for execution platform software. 

The project funding my PhD studies aims at critical infrastructure applications such as smart grids and 

traffic control systems. These systems become more and more connected to the internet and thus 

need to be made more resilient against attacks. The project is made up of four areas, only one of 

which our group is responsible for. We are applying formal verification for improving security in 

terms of execution domain isolation in hypervisor software. The other three are researching resilient 

control algorithms, secure communication protocols and physical layer network security. 

Since we apply software verification at binary level, processor models are needed. As an example, we 

study ARM architectures. Previous research in our group took existing models and extended them, 

e.g. with virtual memory by adding a suitable model of the memory management unit (MMU). 

The proof of hypervisor isolation is comprised of different parts. Firstly, a user lemma proving that 

user-mode instructions do not affect hypervisor state. Secondly, the definition of an MMU page table 

configuration invariant. This states that valid page tables do not allow the execution domains to 

affect page table contents. Thirdly, we split hypervisor code in two parts, i.e. the page table and 

MMU related part and the rest. For the former we modelled the hypervisor software in our proving 

system (i.e. HOL4). 

Part of the proving tool chain consists of a lifter: a software that creates from binary code 

semantically equivalent machine independent intermediate code (in the BIL language). Another tool, 

called binary analysis program (BAP), is used to generate the weakest precondition of a BIL program 

for further analysis. In order to improve faith in the proof, we want to integrate the Lifter into the 

proof system and obtain a proof for the lifting being correct. This is achieved by a proof-producing 

compilation. 

The new Lifter produces a proof that demonstrates a simulation between the original ARM program 

and the produced BIL program. This theorem allows to transfer properties verified for the BIL 

program to the ARM one. 

In the future we plan to experiment with generating code directly from our software models of the 

page table and MMU related code. We want to use an intermediate language of the proof-producing 

CakeML system. Then, together with a proof-producing code generation from our software models, 

we would have a trustworthy compilation, which does not require lifting or any further effort to 

prove semantic equivalence. 


